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The Impact of Recession Infiltration on Runoff Volume
Computed by the Kinematic Wave Model

J. J. Stone, E. D. Shirley, L. J. Lane
Member Member

ASAE ASAE

Abstract. The effect ofrecession infiltration on runoff volume isquantified using the kinematic wave modelfor the case
of lateral inflow made up ofconstant rainfall excess during the period ofrainfall and constant infiltration after rainfall
ends. Ageneral solution is obtained using the following non-dimensional quantities; Q* = QIRe (runoff volume divided
by rainfall excess volume), t* = teID (time to kinematic equilibrium divided by the duration ofrainfall excess), andf* =
flre (infiltration rate divided by rainfall excess rate). Using these quantities, the relationship for the reduction ofrunoff
volume is Q* = 1 - ml(m+l) t* [f*/(f*+l)]1/m when t* < [(f*+I)/f*],lm and Q* = l/(m+l) t*~m (f*+l)/f* when U>
[(f*+l)lf*]llm where misthe kinematic wave depth-discharge exponent. Thefirst equation corresponds to the case when
flow ceases after the characteristicfrom distance and time zero, C(00), reaches the end ofthe plane. The second equation
corresponds to the case when theflow ceases and C(00) does not reach the end ofthe plane. These equations approximate
the reduction of runoff volume for the more general case of time varying rainfall excess under constant and variable
rainfall as would bethe case when the rainfall excess isgenerated using the Green-Ampt infiltration equation.
Keywords. Runoff, Infiltration, Recession hydrograph.

he lateral inflow rate, v (m/s), is the rate at which
water that is available for runoff accumulates on a
flow surface. For a constant rainfall and
infiltration rate, it is defined as:T

v = i-f>

v = -f

v = 0

0<t<D

D<t<t,

t>t,

h>0

h>0 (1)

h = 0

where

i = rainfall rate (m/s)
f «= infiltration rate (m/s)
re = rainfall excess rate (m/s)
t =time

D = duration of rainfall excess (s)
h - flow depth (m)
tf = time (s) when runoff depth becomes zero at the end

of the plane
A common assumption in many rainfall runoff

simulation models is that the lateral inflow rate is only
made up of the first component in equation 1, rainfall
excess, and that the second component, infiltration during
the recession phase of the hydrograph, is negligible. In
effect, runoff volume, Q (m), is assumed to be equal to the
rainfall excess volume, Re (m). This assumption is popular
because many design problems involve predicting the

Article was submitted for publication in February 1993; reviewed and
approved for publication by the Soil and Water Div. of ASAE in July
1993.

The authors are Jeflry J. Stone, Hydrologist, Edward D. Shirley,
Mathematician, and Leonard J. Lane, Hydrologist, Southwest Watershed
Research Center, USDA-Agricultural Research Service, Tucson, AZ.

Vol. 36(5): 1353-1361 -September-October 1993

runoff hydrograph for extreme or large events in which
most of the runoff occurs as infiltration approaches steady
state. Consequently, the rainfall excess volume is large
compared to the recession infiltration volume so that the
overestimation of runoff volume is small. However, for
small events or situations with long hydrograph recession
durations, the recession infiltration can be a substantial
portion of the total rainfall excess volume.

The most general solution for recession infiltration was
presented by Smith and Woolhiser (1971) who used an
infiltration equation coupled with a finite difference
solution of the kinematic cascade model. The first
analytical solution for the case of constant rainfall excess
and infiltration was developed by Wooding (1965b) who
showed in graphical form the effect of recession infiltration
on the watershed runoff volume using an integer depth-
discharge exponent for the kinematic wave model but did
not explicitly develop a relationship between the rainfall
excess volume and the routed runoff volume. Dunne and

Dietrich (1980) computed the recession hydrograph
assuming constant infiltration and considering an initial
condition at the end of rainfall. Cundy and Tento (1985)
developed an analytical solution for a coupled kinematic
wave model and Philip's equation for the case of constant
rainfall and variable infiltration. However, the amount of
error in neglecting recession infiltration has not been well
quantified in the literature.

The purpose of this article to examine the impact of
neglecting recession infiltration for the simple case of
constant rainfall and constant infiltration when coupled
with the kinematic wave model for overland flow on a
single plane. In order to generalize the analysis, non-
dimensional quantities are defined and used to develop a
relationship between rainfall excess volume and routed
runoff volume as a function of the kinematic time to
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equilibrium and the final infiltration rate. The relationship
is presented in equation and graphical form. The results for
a range of slope lengths, gradients, and roughnesses
obtained from the equations are compared with a general
numerical solution of a coupled infiltration kinematic wave
model.

Kinematic Wave Model for

Overland Flow

The kinematic wave model for overland flow on a single
plane consists of the continuity equation:

3h dq _
— + -2. = l-f = v
3t a*

(2)

a depth-discharge relationship:

q= <xhm

and initial and boundary conditions:

h(0, x)= h(t, 0)= 0

(3)

(4)

where

h

t

q
x

a

m

flow depth (m)
time (s)
dischargeper unit width (m3/ms)
distance (m)
depth-discharge coefficient
depth-discharge exponent

If theChezy relationship is used,m = 3/2and a = C S01/2
where C = Chezy coefficient (m1/2/s) and S0= slope of the
plane (m/m). If the Manning relationship is used, m = 5/3
and a = S01/2/n where n = Manning coefficient (s/m1/3).
Equations 2 and 3 can be combined (Wooding, 1965a; or
Eagleson, 1970):

dh , m-idh
— + amh -^-<
at dx

(5)

Equation 5 is solved by considering a curve, Cz, called a
characteristic defined as starting at a boundary point z =
(t0, x0) = (t0, 0) or an initial point z = (t0, x0) = (0, x0)
(fig. 1) and parameterized by time t as Cz(t) = [t, xz(t)].
The distance, xz(t), at time t on the characteristic Cz is
given by:

dxz(t)
dt

a mhz(t)m-l
(6)

where hz(t) = h[t, xz(t)]. The depth at that distance on the
characteristic Cz is defined by:

dhz(t)
dt

v(t) (7)
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x = 0

rainfall excess

runoff

characteristic

- xz(t)

Figure 1-Definition sketch of the characteristic plane, C/q 0)
characteristic, and hydrograph for constant rainfall excess.

For the case of constant rainfall excess, the time when
the outflow rate equals the inflow rate or the time to
kinematic equilibrium, te, is computed as:

at
m-l

1/m

(8)

where L represents the length (m) of the plane. This time
corresponds to the time when the characteristic, C(00),
which originates at the top of the plane at time zero,
reaches the end of the plane (fig. 1).

A definition of lateral inflow which does not allow for

infiltration during the recession of the hydrograph results in
two physically unrealistic properties of the runoff
hydrograph; partial equilibrium and a hydrograph of
infinite duration. Referring to figure 2: (1) Partial
equilibrium occurs when the duration of rainfall excess is
less than the time to kinematic equilibrium. The result is
that the flow depth at the end of die plane is constant (2)
during the recession until the Q0to) characteristic reaches
the end of the plane (3). At that time, the flow depth begins
to decrease (4), not because of infiltration, but because
water is flowing off the plane. As the flow depth on the
plane during the recession becomes small, the rate at which
water flows off the plane becomes small. As a
consequence, the flow depth approaches zero as time

Transactions of the ASAE



1. recession starts

2. constant water level

3. C . . arrives at end of plane

4. water level decreasing
flow surface

q<'(

rate

x = L

distance

x = 0

1 ! 2 3

// / /
/ I / / /

f /

rainfall excess

runoff

characteristic

time

Figure 2-Definition sketch of the characteristic plane, hydrograph,
and water surface profiles for the case of partial equilibrium under
constant rainfall excess of finite duration.

approaches infinity and the hydrograph has an infinite
duration.

The Relationship Between Rainfall

Excess Volume and Runoff Volume
In order to develop the relationship between rainfall

excess and runoff volume, the definition of lateral inflow
from equation 1 is used. The total runoff volume when
recession infiltration is computed is obtained by integrating
equation 2 from 0 to <» with respect to time to obtain:

'frMdt-O
dt

(9)

aq(t, x)
ax 3x

q(,,x)dt=^« (10)
dx

v(t)dt=rcD-f[tf(x)-D]

^)=rcD-f[tf(x)-D]
dx
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(ID

(12)

where Q(x) is the total runoff volume at x and tf(x) is time
runoff ends at x. The total runoff volume, Q, at the end of
the plane is obtained by integrating equation 12 with
respect to the length of the plane:

dQ(x)> {rcD-f[tf(x)-D]}dx
Jo

Q=reDL-f tf(x)dx + fDL (13)

It can be shown (Appendix I) that the form of tf(x), and
thus, the solution of the integral in equation 13, depends
on:

L<arem-1Dm +^(reD)1

L>arem-,Dm + a(rcD)r

(14a)

(14b)

Equation 14a corresponds to the case when the flow ceases
at L after the characteristic, C(0>o). from time and distance
zero reaches the end of the plane and equation 14b
corresponds to the case when the flow ceases and Qp,o)
does not reach the end of the plane (fig. 3). For the first
case, the integral of tf(x) in equation 13 is:

rL

tj(w)dw D + 5*. w

flar™"1 f+r

L f
l/m

DL+-m-AL
m+1 f lar"1-' f+r.

l/m'

dw

(15a)

where w is the dummy variable of integration. Substituting
into equation 13:

Q=rcL D- m

m+1 larf"-1 f+r.

l/m

(16a)

Equation 16a can be simplified by substituting the
definition of te given by equation 8 and the definitions
Q* - Q/Re where Re = re D (m), t* = te/D, and U = f/re,
to get:

m f*
Q,= l-

m+1 \f, + 1

For the second case, the integral of tf(x) is:

l/m

U (17a)
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distance

x = 0

Zone of Eq. 14a

Zone of Eq. 14b

time flow ceases at x

Figure 3-Definition sketch of the characteristic plane for cases when
the flow ceases onthe flow surface after C«> q)reaches theend of the
flow surface and flow ceases and Cm q\does' not reach the end ofthe
flow surface.

f
Jo

tf(w)dw

fKfc^rh-fH^I dw

DL+^
f

m-l

l-^-|Dr"
m+1 I L

1 /n"-arcm"1 f+re

where for convenience, p* is defined as:

P=arem-1Dm + a(reD)1

Then equation 13 becomes:

.m-l T\mi ar"1 D f+rQ= r PL l ^ — e
e m+1 L f

(15b)

(16b)

and using the non-dimensional quantities defined above,
equation 16b becomes:

m+1 f«
(17b)
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Q* =

Q* =

1.0 -

0.8 -
Eq. 17a

0.6 -

10 \ f*^>^
0.375 •

3 1 .3 .1

0.2 -

1.0 i

0.375

0.1 J

.01

2 3 4

t.

t* =
e

6 8 10

1..=

Figure 4-Plot of U vs. Q* for equations 17aand 17b for the Manning
discharge relationship.

The indicator whether to use equation 17a or 17b is derived
by considering the division between equation 14a and 14b
which isfor the characteristic C(0 0):

m-l _mL=arc D +^-(reD) (18)

Using the definition of t* and f*, equation 17 becomes:

,1/m

t,
f. + 1

f.
(19)

By the inequalities in equations 14a and 14b, we get:

f*

t, >|^i| use eq. 17b (20b)

ff + 1\1/m
——I use eq. 17a (20a)

l/m
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Table 1. Plane characteristics for verification of equations 17a and
17b for unsteady rainfall excess and infiltration

Case (1) Length (m) (2)

10

50
100

10

50
100

Slope (%) (3)

Discussion
Constant Rainfall Excess

In figure 4, equations 17a and 17b are plotted for
selected values of f* using the Manning discharge
relationship. Note that equation 17a is plotted using an
arithmetic scale and equation 17b is plotted using a log-log
scale. The division between equation 17a and 17b is at the
value of Q* - 0.375. For the Chezy relationship the
division would be at Q* = 0.4. Referring to the plot of
equation 17a (fig. 4a), even when kinematic time to
equilibrium is reached and the outflow rate equals the
inflow rate (i.e., t* < 1), the runoff volume is less than the
rainfallexcess volume because of the infiltrationduring the
recession. As would be expected, the greater the infiltration
rate or the larger the value of f*, the greater the reduction
of the routed runoff volume. For example, if the rainfall
excess duration is just equal to the time of kinematic
equilibrium (t* - 1) and the infiltration rate is 10 times the
rainfall excess rate (f* = 10), the reduction is about 62%
while if the infiltration rate is only 0.1 of the excess rate
(f* = 0.1), the reduction is about 10%. As can be seen in the
plot of equation 17b, the reduction in volume can be
substantial if the flow ceases before the C(0|o) characteristic
reaches the end of the plane. This reduction suggests that
for a rough surface as would be the case after a tillage
operation, runoff volume computed by an approach which
neglects recession infiltration can be severely
overestimated. For both cases, apart from increasing the
infiltration rate with respect to the rainfall excess rate,
factors which will reduce rainfall excess volume are
increasing the roughness, decreasing the slope gradient, or
increasing the slope length.

Unsteady Rainfall Excess and Infiltration

Equations 17a and 17b are only exactly true when
lateral inflow is defined by equation 1. Methods which
compute recession infiltration for the more general case of
unsteady rainfall and variable rainfall excess generally
involve a numerical solution of the kinematic wave model.

As mentioned in the introduction, the KINEROS model
(Woolhiser et al., 1990) uses a finite difference scheme to
solve a coupled infiltration-kinematic wave model for
overland and channel flow. Implementing a finite
difference solution in a management model, particularly
when used in a continuous simulation mode, can be
impractical. Therefore, it is useful to examine how
applicable equations 17a and 17b are to the more general
case of unsteady rainfall excess and infiltration in relation
to the more general solution contained in KINEROS.

To do the comparison, rainfall excess is computed using
the Green-Ampt Mein-Larson (GAML) infiltration
equation (Chu, 1978) for two rainfall intensity patterns,
constant and variable. The amount of reduction of rainfall

Vol. 36(5): 1353-1361 -September-October 1993

Table 2. Rainfall distributions for verification of equations 17a and
17b for unsteady rainfall excess and infiltration

Distribution (1) Time (min) (2) Rate (mm/h) (3)

Constant

Variable

0 50
30 0

0 30
10 40
20 50

30 60
40 30
50 10
60 0

excess volume is then computed using equations 17a and
17bfor a smooth and rough flow surface and several slope
lengths and gradients. Finally, the results are compared
with the KINEROS model which was modified to include
Chu's solution of the GAML equation.

To apply equations 17a and 17b for unsteady rainfall
and infiltration, the average rainfall excess during the
duration of rainfall excess and the final infiltration rate at
the end of rainfall excess is used. The plane characteristics
and the two rainfall distributions, constant and variable,
used in the analysis are listed in tables 1 and 2,
respectively. Infiltration and kinematic parameters include
initial soil moisture (0.20), effective saturated conductivity
(6.5 mm/h), matric potential (110 mm), and porosity
(0.43), and two Manning's n values, n = 0.35
corresponding to a no-till surface with 3 T/acre residue and
n = 0.045 corresponding to a bare or fallow surface
(Engman, 1989).

The infiltration and rainfall excess variables needed for
equations 17a and 17b were computed using a GAML
infiltration model (Stone et al., 1992). For the constant
rainfall case, these values are:

D-23.21 min-1393 s Re - 8.19 mm - 0.00819 m

f- 21.29 mm/h - 0.00000591 m/s rg - 21.17 mm/h - 0.00000588 m/s

and for the variable rainfall case:

D- 34.49 min -2189 s Re - 13.20 mm - 0.0132 m

f- 17.94 mm/h - 0.00000498 m/s rfi - 21.70 mm/h - 0.00000603 m/s

The non-dimensional infiltration for the constant rainfall
case is:

f.-J-f „ 21.29

21.17
1.01

and for the variable rainfall case is:

f.-JLL24-o.83
21.70

As an example, Case 1C in table 3 (0.01 slope, 10.0 m
slope length, n = 0.35, constant rainfall) is used for the
remainder of calculations. The depth-discharge coefficient,
a, is:
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sl/2 0Q1l/2
a=-—= — 0.29

n 0.35

the time to kinematic equilibrium, te:

kl/m

a?-1

Q* = l- m

10

(0.29) (0.00000588)V3

and the dimensionless time, U:

t. =1=1035^0.75
D 1393

To test to use equation 17a or 17b, compute the quantity:

Because U < 1.51, equation 17a is used to compute Q*:

f.
l/m

m+1 If* + 1
t*

3/5

1- (0.625) ( 101 ) (0.75) =0.69
\1.01 + 1/

1035 s

The runoff volume is found by using the definition of Q*
as:

q = Q,Re = (0.69) (8.19) =5.66 mm

In the same manner as above, the values listed in tables 3
and 4 were computed.

Referring to tables 3 and 4, the values in columns 4 and
5 are the total amount of runoff which actually runs off the

Table 3. Results of verification ofequations 17a and 17b for n = 0.35
and unsteady rainfall excess and infiltration (for the constant rainfall
case, f* = 1.01 and rainfall excess volume = 8.19 mm, for the variable

rainfall case, f* = 0.83 and rainfall excess volume = 13.20 mm)

end of the plane. For example, in table 3 for Case 1C, the
total runoff volume computed by KINEROS is 5.57 mm
and by equation 17a is 5.66 mm which corresponds to a
reduction of 32% and 31%, respectively, of the GAML
computed rainfall excess volume (8.19 mm). Note that the
relative difference between the runoff volume computed by
equations 17a and 17b and those computed by KINEROS
is very small for the case of constant rainfall, the difference
between the two increases for the variable rainfall case, and
the difference increases for the rougher surface (n = 0.35).
The reason for this is that for the variable rainfall case,
equation 8 is nota good estimate of the time C(0 0) reaches
the end of the plane and the average rainfall excess rate is a
poor approximation to compute hz(D) which is used to get
tf (D). It is evident that within the range of slope gradients,
lengths, and roughness values used, equations 17a and 17b
can be applied for the case of constant rainfall intensity
with little difference in computed runoff volume from the
more complete solution of KINEROS. Although it is
difficult to generalize accuracy of the equations for
variable rainfall, it is reasonable to state that the smoother
the overland flow surface, the more the runoff volume
computed by equations 17a and 17b and KINEROS will
agree. Equations 17a and 17b offer a simple and quick
alternative to models such as KINEROS which in general
use a numerical solution to the kinematic wave model.

The reduction of routed rainfall excess can be

substantial if the flow surface has a high degree of
roughness, even if the length of the flow plane is short. For
example, for a 10 m plane and a slope of 0.01 (Case 1C),
and Manning's n = 0.35, the reduction computed by
equation 17a is 31% (table 3). In contrast, for the same
plane length and slope but a Manning's n « 0.045, the
reduction is only 9% (table 4). This illustrates, in a
practical sense, when disregarding recession infiltration
might cause substantial error in prediction or evaluation.
For example, many management practices being
recommended by U.S. action agencies such as the Soil
Conservation Service to reduce or control erosion involve
leaving residue on the soil surface after harvest. If a
simulation model such as WEPP (Lane and Nearing, 1989)

Table 4. Results of verification of equations 17a and 17b for n = 0.045
and unsteady rainfall excess and infiltration (for the constant rainfall
case, f* = 1.01 and rainfall excess volume = 8.19 mm, for the variable

rainfall case, f* = 0.83 and rainfall excess volume « 13.20 mm)

Runoff Volume (mm) Runoff Volume (mm)

Eq. (17a) Relative Eq. (17a) Relative

Case t* Eq.No. KINEROS or (17b) Difference Case t* Eq.No. KINEROS or(17b) Difference

(1) (2) (3) (4) (5) (%)* (6) (1) (2) (3) (4) (5) (%)* (6)

ict 0.75 17a 5.57 5.66 -1.6 ict 0.22 17a 7.47 7.45 0.3

2C 1.96 17b 1.95 1.98 -1.5 2C 0.58 17a 6.19 6.24 -0.8

3C 2.98 17b 0.98 0.99 -1.0 3C 0.87 17a 5.16 5.24 -1.6

4C 0.39 17a 6.86 6.87 -0.3 4C 0.11 17a 7.87 7.81 0.8

5C 1.02 17a 4.65 4.73 -1.7 5C 0.20 17a 7.19 7.18 0.1

6C 1.55 17b 2.94 2.95 -0.3 6C 0.45 17a 6.63 6.67 -0.6

IV* 0.47 17a 11.79 10.78 8.6 m 0.14 17a 12.93 12.49 3.4

2V 1.24 17a 8.23 6.85 16.8 2V 0.36 17a 12.20 11.34 7.0

3V 1.88 17b 4.94 3.83 22.5 3V 0.45 17a 11.48 10.38 9.6

4V 0.25 17a 12.59 11.94 5.2 4V 0.07 17a 13.15 12.83 2.4

5V 0.64 17a 11.09 9.90 10.7 5V 0.19 17a 12.77 12.24 4.2

6V 0.98 17a 9.55 8.19 14.2 6V 0.28 17a 12.47 11.74 5.9

* Relative difference - (Column 4 - Column 5) / Column 4 x 100.
t 1 - case 1 from table 1, C - constant rainfall from table 2.
t 1 - case 1 from table 1, V - variable rainfall from table 2.
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* Relative difference - (Column 4 - Column 5) / Column 4 x 100.
t 1 - case 1 from table 1, C - constant rainfall from table 2.
$ 1 - case 1 from table 1, V - variable rainfall from table 2.
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is used to evaluate the efficacy of a management practice,
components of the model which are affected by the water
balance can be substantially impacted by the recession
infiltration.

Tolerable Error in Runoff Volume Estimation

Equation 17a can be used to compute a threshold in terms
of t* above which recession infiltration should be considered
by rewriting equation 17a in the form of an inequality:

u^(i-Q.)nttL|l±lp (21)
For example, to compute a tolerable level of 10% error in
runoff volume for the Manning discharge relationship,
substitute Q* =» 0.9 into equation 21 to obtain:

f.

3/5

t-<0.16

Then characteristic conditions (slope length and gradient,
roughness, infiltration, and rainfall) can be used to
determine if neglecting the recession infiltration will cause
more than a 10% error in runoff volume calculation. Using
the cases from tables 3 and 4, t* has to satisfy:

U<0.16 (1.01 +if5
V 1.01 /

for the constant rainfall case, and:

0.24

t, <o.l6(a83 +1f/5 =0.26
V 0.83 /

for the variable rainfall case in order for the error in runoff

volume estimation to be less than 10%. Referring to
column 2 in table 3, only Case 4V satisfies the criteria
while in table 4, Cases 1C, 4C, 5C, IV, 4V, and 5V satisfy
the criteria. The cases listed in tables 3 and 4 represent a
large range of slope lengths, gradients, and roughness
values, methods which neglect recession infiltration can
frequently overestimate the amount of runoff leaving a
flow surface.

Summary
The amount of reduction in rainfall excess volume that

will occur during the recession of the hydrograph was
quantified using non-dimensional quantities and solving
the kinematic wave model for overland flow for the case of

constant rainfall excess and infiltration rates. Two

equations were developed, the use of which depend on if
the characteristic from time and distance zero, C(0)0)»
reaches the end of the flow surface before the time the flow

ceases orif the flow ceases and C(o,o) never reaches the end
of the plane. The equations show that for rough surfaces as

Vol. 36(5): 1353-1361 -September-October 1993

would occur after a tillage operation, the overestimation of
runoff volume can be considerable if the infiltration during
the recession of the hydrograph is neglected. The
KINEROS model which computes recession infiltration
was used to compare the results of the equations for the
more general cases of time varying rainfall excess and
infiltration under constant and variable rainfall intensity
distributions. For the range of slope gradients, lengths, and
roughness values tested, the equations and KINEROS
computed similar reductions of rainfall excess for constant
rainfall for both rough and smooth overland flow surfaces.
For variable rainfall and rough surfaces, the difference
between the equations and KINEROS increased because of
the approximation of using the average rainfall excess rate
in an unsteady state process. However, the equations offer
a simple and quick alternative to the more computer
intensive numerical solutions generally used in models like
KINEROS. Finally, the equations were used to derive a
check which determines under which conditions neglecting
recession infiltration will exceed a pre-specified error
criteria in runoff volume estimation. It was shown for the

range of slope gradients, lengths, and roughness values
tested that methods of runoff routing which neglect
recession infiltration can frequently overestimate the
amount of runoff leaving a flow surface.
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APPENDIX I* Referring to figure 3, tf(z) will have adifferent form if
The depth, hz(D) =h[D, xz(D)], on the characteristic at flow ceases after C(00) reaches the end of the plane or if

time Dis computed as: flow ceases and C(0>0)' never reaches the end ofthe plane.

hz(D)=re(D-t0) (A.1) Case1
The first case is when flow ceases at L after C,0 0)

reaches L which means that t0 > 0 andx0 = 0. The timet0
Fort < D,by equations 2 and 3, the flow depth, hz(t), ona in equation A.7 is now the starting time of the
characteristic is: characteristic which reaches L just when the depth

becomes zero. Noting that when t = tf, hz(D) = f(tf - D)
r« and substituting equation A.2 into equation A.3, equation

hz(t) = re(w)dw = re(t-t0) (A.2) A.5 becomes:

and for t > D is:

hz(t)=hz(D) +

L=arr,(D-t0)m +^[re(D-t0)]m (A.8)

BecauseD > t0, equation A.8 becomesequation 14a:

fdw= hz(D)-f(t-D) (A.3) L<arem-1Dm +a(reD)m (14a)

Solving equation A.8 for t0:
where z = (t0, x0) and t0 and x0 are the starting points on
the boundary ofthe t-x plane of the characteristic. For t < / v1/m / f *1/m
D, by equations A.l, A.2, and 6, the distance, xz(t), on a t© =D- I ^ A I—1—\ (A.9)
characteristic is: \ar™ / \f + r=/

xz(t) = x0 + a m

-x0 +are(«-t„r (A.4) ^"°+t frP fcP ^

•* Substituting equation A.9 into equation A.7, the time flow
[re t (w) -10] m_1 dw ceases atLis:

and for t > D: Case 2

In the second case, flow ceases at L and C/0 0\ never
J1 reaches L when t0 - 0 and x0 > 0. Making the same

(h2(D) - f[t (w) - D|} m~l dw substitutions as with equation A.8:
D

=xz(D)+fl-WD)".-[hz(D)-f(t-D)]"-} (A.5) L= "o +ar«m-' D" +*fcD)" (A.11)
and becausex0 > 0, equationA.l 1 becomesequation14b:

where xz(D), the distance on the characteristic with depth L>arm-lDm +fiUrD)m d4M
hz(D) at time D, is computed as: " e f'e ' * '

xz(D) = x0 +a r?-1 (D - to)™ (A.6) Because t0 =0, equation A.3 is:

Substituting equation A.l into equation A.3 when hz(t) - 0 * '= T^ (A.12)
and solving for t, the time, tf (z), that flow ceases is:

and tf in equation A.7 becomes:

*,-D+*fi>zSl (A,) ^_nf |
f (A.13)

* The original equation numbers are retained if theequation hasalready
been introduced in the main body of the text.
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Symbols
SymbolUnits

C mi/2/s

Cz m/s

C(0,0) m/s

D s

f m/s

f* ND

h m

hz m

i m/s

I m

L m

m ND

n s/m1/3

q m3/ms

Q m3/m2s

Q* ND

re m/s

K m

Description

Chezy coefficient
characteristic which originates at z
characteristic which originates at the top
of the flow surface at time zero
duration of rainfall excess

infiltration rate

dimensionless infiltration rate = f/re
flow depth on the plane
flow depth on a characteristic, Cz
rainfall rate

rainfall amount

length of the plane
depth-discharge exponent
Manning's n coefficient
discharge per unit width
runoff volume per unit area
dimensionless runoffvolume » Q/Re
rainfall excess rate
rainfall excess volume
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SymbolUnits

Sq m/m
t

te
tf
tL

to

t*

v

w

X

*0

z

a

ND

m/s

ND

m

m

m, s

m1/2/s -
Chezy

s/m1/3 -
Manning

Description

slope of the plane
time

time to kinematic equilibrium
time that flow ceases

time that a characteristic (x = 0, t > 0)
reaches the bottom of the plane
origin point of a characteristic on the
t-axis when x0= 0
dimensionless time
lateral inflow rate

dummy variable of integration
distance

origin of a characteristic on the x-axis
when t0 = 0
origin pointof a characteristic at t0 or x0
depth-discharge coefficient

te/D
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